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Abstract

Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. 

Concerns about serious potential health effects of nanomaterials were widespread. Now, 

approximately 15 years later, it is worthwhile to take stock of research and efforts to protect 

nanomaterial workers from potential risks of adverse health effects. This article provides and 

examines timelines for major functional areas (toxicology, metrology, exposure assessment, 

engineering controls and personal protective equipment, risk assessment, risk management, 

medical surveillance, and epidemiology) to identify significant contributions to worker safety and 

health. The occupational safety and health field has responded effectively to identify gaps in 

knowledge and practice, but further research is warranted and is described. There is now a greater, 

if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to 

workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure 

characterization methods are still lacking. The development of control-banding and similar 

strategies has compensated for incomplete data on exposure and risk, but it is unknown how 

widely such approaches are being adopted. Although the importance of epidemiologic studies and 

medical surveillance is recognized, implementation has been slowed by logistical issues. 

Responsible development of nanotechnology requires protection of workers at all stages of the 

technological life cycle. In each of the functional areas assessed, progress has been made, but 

more is required.
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Introduction

The commercial exploitation of nanotechnology has attracted marked public interest since 

around the year 2000. Workers, including researchers and their students, were the first 

people exposed to the products of this new technology. If nanotechnology was to be 

responsibly developed, workers had to be protected (Schulte and Salamanca-Buentello 

2006). The concern that engineered nanomaterials (ENMs) could be hazardous stemmed 

from awareness of the respiratory and cardiovascular effects of ultrafine air pollutants; 

industrial experience with health effects from welding fumes, and diesel particles, including 

metal fume fever; acute pulmonary inflammation from fumed silica; and various animal 

studies showing translocation of gold nanoparticles from nasal mucosa to the brain (De 

Lorenzo 1970) and respiratory effects due to ultrafine zinc (Amdur et al. 1988). Ultrafine 

particles were found to have greater pulmonary toxicity than larger respirable (fine) particles 

when measured by the mass dose; particle volume and particle surface area were found to be 

more predictive dose metrics (Morrow 1988; Oberdörster and Yu 1990; Duffin et al. 2002). 

Scientific literature on occupational exposures to and health effects from existing aerosol 
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particulates and fibers provided a basis for evaluating the potential hazards of new nanoscale 

aerosols and highlighted gaps in the current body of knowledge (Maynard and Kuempel 

2005).

Caution was initially sounded in 2000, when the United States National Science Foundation 

stated, “As currently envisioned, nanomaterials are likely to possess at least three properties 

that will generate novel safety and governance challenges: invisibility, micro-locomotion, 

and self-replication” (Roco and Bainbridge 2001). In 2004, the insurance company Swiss Re 

was more explicit, stating: “Presumably, nanoparticles must be handled with the same care 

given to bio-organisms or radioactive substances” (Hett 2004). In that same year, The Royal 

Society and The Royal Academy of Engineering warned, “There are uncertainties about the 

risk of nanoparticulates currently in production that need to be addressed immediately to 

safeguard workers and consumers and support regulatory decisions. … The evidence that 

has been reviewed suggests that manufactured nanoparticles and nanotubes are likely to be 

more toxic per unit mass than particles of the same chemical at larger size and will, 

therefore, present a greater hazard.… Free particles in the nanometer size range do raise 

health, environmental, and safety concerns, and their toxicology cannot be inferred from that 

of particles of the same chemical at larger size” (The Royal Society and The Royal 

Academy of Engineering 2004).

In 2004, when scientists from various countries met in Buxton, UK, for the first in a special 

series of nanotechnology occupational and environmental health (NanOEH) conferences of 

the occupational and environmental communities (Fig. 1), there were already over 200 

claimed products identified as “nano-enabled” in commerce, indicating that workers were 

handling nanomaterials (Woodrow Wilson Center 2013). Moreover, the global market for 

nanomaterials was predicted to grow to an estimated $4.4 trillion by 2018 (Lux Research 

Inc. 2014). This meant that scientists and government officials had to answer not only 

whether the material was harmful, but also whether there were exposure and risk, and 

simultaneously, they had to devise strategies for handling nanomaterials safely. These 

NanOEH conferences represented periodic ad-hoc gatherings of the occupational safety and 

health community to address potential hazards of a new technology. They served to 

stimulate networking and discussion of emerging findings and needs in nanosafety research.

After almost two decades of commercial activity, it is worth assessing whether progress has 

been made on the critical issues of occupational safety and health in nanotechnology. In this 

article, we examine the history of the occupational safety and health efforts regarding ENMs 

from 2000 to 2015. To better explore progress in this field, eight important topical areas are 

distinguished: toxicology, metrology, exposure assessment, engineering controls and 

protective equipment, risk assessment, risk management, medical surveillance, and 

epidemiology. For each topical area, major milestones have been identified, including 

significant technical or research achievements as well as policy recommendation or adoption 

by national agencies, international government organizations, or professional non-

governmental organizations. The selection of these milestones is based on the experience 

and judgment of the authors and includes consideration of the import assigned to actions and 

works by professional communities, as well as the volume of citations (as indicated by 

Google Scholar, Assessed August–September 2015) for academic literature. The selected 
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milestones are then synthesized into timelines to allow a historical portrayal of critical 

findings and actions that have advanced knowledge in that area. Although this is a 

qualitative approach, this method provides a better context than would be available by a 

strictly quantitative review of the academic literature. Moreover, it allows one to more 

readily see not only how the field came to reach its current state, but also the current tasks 

and challenges in each area that remain to be addressed.

Toxicology

The initial question from workers, employers, and other decision-makers was whether 

ENMs are harmful and, if so, what mechanisms and properties explained their toxicity. 

Many of the toxicological methods and models used to investigate nanomaterial health risks 

have their origins in studies of the toxicology of particles and fibers (Kreyling et al. 2002a; 

Oberdörster et al. 2005b). Studies investigating the unique or enhanced properties of 

nanomaterials published prior to 2000, have led to the current field of nanotoxicology 

(Donaldson et al. 1998; Oberdörster et al. 1992, 1994). A major focus of these studies has 

been effects on the respiratory tract, because of the history of occupational respiratory 

diseases associated with aerosol exposures. Nanoparticles are respirable, which enables them 

to reach the gas-exchange (alveolar) region of the respiratory tract (Oberdörster et al. 

2005a). Nanoparticles have also been observed to reach the interstitium and the blood, which 

may represent a path for the translocation of inhaled nanoparticles from the lung to 

secondary organs (Donaldson et al. 2004; Kreyling et al. 2010; Mercer et al. 2010, 2013). 

Carbon nanotubes (CNTs) also appear to rapidly promote interstitial fibrosis, and specific 

multi-walled CNTs (MWCNTs) have been shown to promote lung cancer (Sargent et al. 

2014). Beyond this, inhalation of nanoparticles has been linked to cardiovascular effects (Li 

et al. 2007; Nurkiewicz et al. 2008). The toxicological behavior of ENMs and natural or 

incidental ultrafine particulate matter has been observed to be quite similar (Gwinn and 

Vallyathan 2006). It is thought that inhalation is the main route of exposure, as insoluble 

nanoparticles do not generally traverse the intact skin (Rouse et al. 2007). However, there 

does not appear to have been a comprehensive study of cutaneous exposure, which leaves 

unanswered certain questions about reliability of cross-species models for nanoparticles, 

effects of nanoparticle functionalization on penetration, and the degree to which different 

forms of skin damage might affect penetration.

Nanoparticle toxicity is increasingly thought of as a confluence of multiple contributory 

mechanisms stemming from the physicochemical properties of a given nanomaterial. Much-

like inhalation of fine and ultrafine particles, nanoparticle size does affect (but does not fully 

govern) the toxicity (Maynard and Kuempel 2005; Oberdörster et al. 2005a). For instance, 

insoluble nanoparticles have been shown to have inhalation toxicity proportional to the total 

surface area (and thus inversely proportional to individual particle size) (Oberdörster et al. 

1992; Driscoll 1996; Tran et al. 1999). Additional important factors that influence particle 

toxicity include surface reactivity, solubility, and shape (Duffin et al. 2002; Maynard and 

Kuempel 2005). Some indicated mechanisms are: (1) release of ions into solution; (2) 

generation of oxidative stress by facilitating the generation of electron–hole pairs to create 

reactive oxygen species in the microenvironment; (3) semiconductive properties causing 

ejection of excited electrons to create superoxides, directly catalyzing electron transport in 
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redox regulators; and (4) fiber-induced biological responses. Each of these mechanisms may, 

in turn, promote an immune response. These mechanisms appear to be associated with the 

particle’s physicochemical properties (the size of the particle, shape, porosity, chemical 

composition, and any functionalization), but the cellular response to these toxic insults may 

be the primary dictator of outcomes Donaldson et al. (1998, 2004, Nel et al. 2006, 2009; 

Palomaki et al. 2011; Schins and Knaapen 2007). By 2010, the knowledge of toxicology had 

grown considerably, and reviews began to focus on the integration of that knowledge with 

other occupational health-related fields and the gaps that existed (Seaton 2006; Bergamaschi 

2009; Savolainen et al. 2010a).

Figure 2 shows the timeline for toxicology progress. Critical points in the timeline were 

initiation of nanomaterial testing by the Organization for Economic Co-operation and 

Development (OECD) in 2006, findings of possible carcinogenicity from animal studies 

conducted in 2008–2013, and critique of the toxicological research in 2014, which called for 

a better particle characterization (Krug 2014). A commentary by Yu et al. in the following 

years recognized a disconnection: despite tremendous advancement in the field, there were 

only questionable data relating the experimental findings to human hazards (Yu et al. 2015). 

Bridging this gap is going to become increasingly important, not only for occupational 

health, but also for medical applications of ENMs (Cattaneo et al. 2010). At the current 

stage, there is a large body of literature on the toxicology of ENMs (both quantitative and 

mechanistic). However, gaps remain both in the ability to extrapolate toxicity of selected 

ENMs to related classes of ENMs and in translating our knowledge from the petri dish, 

microarrays, or laboratory animal to the human worker.

Metrology

By 2000, it was clear that metrology was going to be critical for understanding NanOEH. 

ENMs were quite varied, at the limits of many instruments’ ability to measure, and it was 

still unclear which properties were essential for understanding toxicity and exposure and for 

devising control schemes. The question was: What nanomaterial physiochemical properties 

should be measured, and how? This question directly impacted both laboratory toxicology 

studies, requiring a thorough characterization of study materials to understand exposure–

response relationships, and workplace exposure assessments, which require differentiation of 

the ENMs of interest from other nanoscale particles in workplace atmospheres. From 

toxicology studies, it was becoming clear that multiple ENM physicochemical properties 

could affect the toxicological response. As such, initial approaches to characterization of 

ENMs sought to measure as many properties as possible to enable understanding of potential 

exposure– response relationships (Bouwmeester et al. 2011). Such strategies are not 

practical, economically viable, or technically feasible and, therefore, necessitate more 

targeted characterization strategies. With regard to assessments of ENMs in workplace 

atmospheres, investigators were initially faced with the challenge that many sampling and 

analytical methods lacked specificity for the ENMs of interest, which made it difficult to 

differentiate them from airborne incidental “background” nanoparticles (Methner et al. 

2007).
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Though the best metric(s) for understanding ENM health effects are still unknown and likely 

vary with material and health endpoint (Jiang et al. 2008), increasingly, there have been 

efforts to better define ENM characterization strategies. For example, many investigators 

have attempted to define a minimum set of nanomaterial properties (surface area, elemental 

composition, particle size, particle-size distribution, zeta potential, and crystallinity) to 

thoroughly characterize an ENM for toxicology studies (Stefaniak et al. 2013). It is now 

recognized that to overcome weaknesses in sampling and analytical methods, because of 

non-specificity, field exposure studies need to be carefully designed to compensate for 

background nanoparticle exposures; in addition, findings potentially must be reevaluated 

with more specific, but costlier and time-consuming analytical methods, such as electron 

microscopy (Methner et al. 2007). This is also necessary, because many real-time 

instruments [such as scanning mobility particle (SMP) analyzers and condensation particle 

counters (CPCs)] used in field studies are limited to assaying a single parameter (such as 

particle-size distribution) and cannot develop the detailed characterization data set required 

for more rigorous exposure assessment and risk assessment.

Figure 3 is the timeline for progress in nanomaterial metrology. A significant progress has 

been made in developing reference materials to support particle identification, in refining 

toxicology characterization strategies, and in clarifying field exposure measurements. Going 

forward, the ability to develop a complete picture of toxicity and exposure results from 

numerous tests by different laboratories—and to reach a broader understanding of the 

exposures associated with specific materials and processes—will require a set of common 

standards (Linsinger et al. 2011; Stefaniak et al. 2013). These standards may be in the form 

of existing and new reference materials, study protocols, and agreed-upon guidance. The 

National Institute of Standards and Technology (NIST) began introducing nanoparticle 

reference materials in 2008, with the release of three sizes of gold nanoparticles (NIST and 

National Cancer Institute [NCI] 2008). Since then, at least 18 such well-characterized 

materials have entered common usage throughout the US and Europe, including carbon 

nanotubes (CNTs), metals and metal oxides, and cellulose nanocrystals (Germany Federal 

Institute for Materials Research and Testing [BAM] 2015). In addition, the European 

Union’s Joint Research Centre’s Nanohub has begun to amass a repository of well-

characterized nanomaterials specifically to “promote better reproducibility and reliability of 

nanomaterials safety testing” (Joint Research Centre 2014). Reference materials may be 

essential for overcoming the lack of standardized measuring practices, allowing 

interlaboratory comparison and instrument calibration. The NanOEH community needs to 

decide whether reference materials are really necessary or if “study,” “benchmark,” or 

“representative test” materials are sufficient for an intended purpose (Roebben et al. 2013). 

Test methods are becoming available from ISO and ASTM International, and guidance 

documents are freely available from the U.S. National Cancer Institute (http://

ncl.cancer.gov/assay_cascade.asp) and consortiums, such as the Center for Environmental 

Implications of NanoTechnology (http://www.ceint.duke.edu/allprotocols). Finally, 

continued development of standards for terminology will be critical for ensuring sound 

metrology that best supports toxicological characterization and workplace exposure 

measurements.
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Exposure assessment

Initially, there was little understanding of ENM exposures, although the ability to protect 

workers and make decisions requires well-developed methods of exposure assessment. Once 

metrology enabled the study of ENM exposures, characterization commenced immediately. 

Initial forays into assessing exposures to ENMs borrowed heavily from the techniques of 

sampling for particulate matter and asbestos (Kuhlbusch et al. 2004; NIOSH 2009a). 

Maynard et al., who examined a single-walled carbon nanotube (SWCNT)–generating 

operation using an SMP analyzer for particle counting and sizing and filter capture, 

demonstrated workplace air concentrations up to 53 µg/m3 (Maynard et al. 2004). In 2007, 

Methner et al. studied a carbon nanofiber (CNF) facility using a real-time CPC as well as 

filter capture, followed by offline analysis with transmission electron microscopy, and 

discovered that the largest amount of particle aerosolization occurred during saw use 

(Methner et al. 2007). These studies demonstrated that ENM aerosols were measurable and 

often linked to specific tasks. However, the studies demonstrated a weakness in the ability to 

measure exposures in a worker’s personal breathing zones, as well as the need for a more 

consistent sampling protocol that could differentiate background concentrations of 

incidental, non-engineered nanoparticles (such as diesel exhaust matter). Several studies by 

Brenner et al. demonstrated an approach to systematic exposure assessment for ENMs in 

semiconductor-related tasks (Brenner et al. 2015; Shepard and Brenner 2014a, b). Similar 

methods were demonstrated by Lee et al. in an investigation of a plant creating silver ENMs 

(Lee et al. 2012).

In addition, the advances in toxicology brought into question whether ‘mass per unit volume 

of air’ was a sufficient exposure metric. Maynard and Aitken outlined the numerous 

physicochemical parameters that seemed to be related to toxicology and developed a 

categorization scheme that would indicate the most critical parameter to analyze for a given 

category of material (Maynard and Aitken 2007). It was also recognized that no single 

measuring tool available could attain all the desired parameters and that the field would 

benefit from an economical, portable tool for simultaneous examination of particle mass, 

and number and development of area-to-volume ratios (Maynard and Aitken 2007). To date, 

such a device remains elusive. Brouwer et al. also examined critical deficiencies in the field, 

noting that in spite of the data governing nanoparticle behavior, the lack of sufficient field 

data or a unified sampling approach made it difficult to draw meaningful conclusions from 

the current exposure data sets (Brouwer et al. 2009).

The need for a more comprehensive and unified approach was addressed by several groups. 

In the US, the National Institute for Occupational Safety and Health (NIOSH) developed and 

demonstrated the Nanoparticle Emission Assessment Technique (NEAT), which specifically 

highlighted the need for surveying discrete tasks in a workplace as well as the need for 

analysis with multiple tools (including particle counters and filter samples analyzed by 

electron microscopy) of reference samples from the material of interest (Methner et al. 

2009). The EU-sponsored NANOSH (Finnish Institute of Occupational Health 2010) 

emphasized the need for harmonized decision logic, measurement strategy, and data 

reporting, as well as the use of multi-instrumental analysis (Brouwer et al. 2009). In 2012, 

Brouwer et al. reported that the First International Scientific Workshop on Harmonization of 
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Strategies to Measure and Analyze Exposure to (Manufactured) Nano-objects in Workplace 

Air had recommended a multi-metric approach combined with specifics in sampling 

approaches and contextual data gathering (Brouwer et al. 2012). OECD followed the 

guidance of Brouwer et al. by recommending a tiered approach consisting of an initial 

survey of work tasks and identification of potential sources of exposure, followed by rapid 

assessment of a few key parameters (such as concentration measurements) and then, detailed 

assessment of all potentially related parameters (surface chemistry testing, imaging, etc.) 

(Organisation for Economic Co-operation and Development 2015).

An example of these practices can be observed in the 2012 report by Dahm et al., in which 

careful decision-making and multiple techniques enabled the research group to demonstrate 

statistically significant correlations in exposure between elemental carbon levels and 

CNT/CNF exposures (Dahm et al. 2012). As a direct consequence of such quality studies, 

the amount of available exposure data is increasing rapidly, and therefore, the field is 

becoming more sophisticated. In 2015, two studies were published that compared numerous 

sites and sampling events to derive high-confidence conclusions (Bekker et al. 2015; Dahm 

et al. 2015); Bekker et al. were able to define the highest-exposure task in their study. Such a 

comprehensive sampling strategy, consistently applied and using a multifaceted 

methodology, represents the future of occupational nanoparticle exposure assessment. 

Advances in the field of exposure assessment for ENMs are presented as a timeline in Fig. 4. 

Despite these advances, the body of published exposure data focuses extensively on CNTs 

and TiO2 and, to a lesser extent, on a few other commercial nanomaterials, such as noble 

metals (silver), metals and metallic oxides (iron, zinc, aluminum), carbon black, and other 

carbonaceous materials, such as fullerenes (Bekker et al. 2015; Brouwer 2010; Kuhlbusch et 

al. 2011). There remains a need to expand investigations of exposures to other types of 

ENMs, such as multilayered or functionalized nanoparticles.

Engineering controls and personal protective equipment

Once exposures could be assessed, it was critical to evaluate which control measures could 

mitigate exposure. Occupational safety and health practitioners drew upon the long and 

successful history of controlling fine dusts and dry powder formulations in pharmaceutical, 

nuclear, coating, pigmentation, and cosmetic industries to identify effective exposure 

containment and control strategies for industries involved in generating or using ENMs. This 

was supported by the accumulating body of evidence, indicating that nanoparticles followed 

laws of aerosol physics in their airborne behavior and, therefore, were susceptible to 

established exposure control technologies. Further investigations concluded that worker 

exposures were directly linked to specific material handling practices and processing tasks 

(NIOSH 2009a). Many of these processes were directly analogous to classic manufacturing 

processes, and as with many historical workplace contaminants, the potential for inhalation 

exposure became a focus. However, because of the greater respiratory deposition of 

nanoparticles versus microparticles, more emphasis was placed on exposure control 

strategies that could capture the smaller aerosols. A secondary concern was dermal 

exposure, because of the ability of some types of nanoparticles to enter through damaged 

skin. Initial exposure control recommendations included the use of local exhaust ventilation 

(LEV), equipped with high-efficiency particulate air (HEPA) filters, if needed; use of damp-
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cleaning methods or HEPA-equipped vacuums for cleaning; and use of impermeable 

materials for gloves (NIOSH 2009a).

These initial recommendations were validated by recent studies. A study by Methner in 2008 

found that in the process of generating 15- to 50-nm-diameter metal-alloy spheres, a single 

process (cleaning a reactor) generated the most airborne nanoparticles. The study also 

showed that installation of LEV with a HEPA filter (since discharge was impractical in the 

self-contained system) could result in a mean airborne reduction of 88 % mass-concentration 

(µg/m3) (Methner 2008). Another investigation, by Rengasamy et al. (2008), found that N95 

and P100 filtering face-piece respirators typically removed in excess of 95 % of 

nanoparticles, with the effectiveness increasing as particle diameter decreased below 30 nm 

(Rengasamy et al. 2008). Safe Work Australia discussed the methods by which nanoparticle 

trapping occurs and further recommended exploration of the use of electrostatic precipitators 

and, for some processes, full enclosure as well as eye and facial protection (Safe Work 

Australia 2009).

The uncertainty of exposure risk for a given ENM can complicate determination of the 

appropriate controls. A control-banding approach introduced by Paik et al. (2008) ranks 

materials on a 1–4 scale, based on both the particle toxicity and the probability of exposure, 

with conservatively high assumptions for unknown parameters. Each control band is then 

matched with a specific set of recommended controls (Paik et al. 2008). This technique is 

part of a growing toolbox of accepted methods for controlling ENMs, despite uncertainties 

about specific nanomaterials (NIOSH 2013a).

A growing body of studies is available from NIOSH and the United Kingdom Health and 

Safety Executive (HSE) to guide decisions on controls and selection of personal protective 

equipment (PPE) both for general nanomaterial use and specific processes of interest. These 

recommendations are strongly rooted in the identification of exposure risks that are both 

task-derived and toxicology-dependent, and they help bring to bear scientifically 

demonstrated methods of mitigation through engineering controls, followed by PPE. In 

addition, efforts are ongoing to develop a method for sharing best practices in occupational 

health and to develop the technologies necessary to enable better assessment of the efficacy 

of engineering controls (Sirviö and Savolainen 2011). This cooperative development will 

complement other global efforts to develop standards to assess and mitigate ENM hazards. 

Advances in the field of engineering controls and PPE for ENMs are presented as a timeline 

in Fig. 5.

Risk assessment

One of the driving questions in the early 2000s was whether workers exposed to ENMs were 

at risk of adverse health effects and to what extent those effects depend on the nanoscale 

properties. The limited data and uncertainty on the toxicity and environmental behavior of 

ENMs made risk assessment difficult initially. However, standard risk assessment methods 

and dosimetry models that account for differences in the lung doses in animals and humans 

have been used in quantitative risk assessments of ultrafine or fine particles (Kuempel et al. 

2006). These methods were used to estimate the particle-size-specific pulmonary disease 
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risk of titanium dioxide (TiO2) on the basis of retained particle surface area lung burden 

(Dankovic et al. 2007). Particle volume lung retention was the dose metric used by Pauluhn 

to derive an occupational exposure limit (OEL) for MWCNT, using the lung particle 

overload hypothesis (Morrow 1988; Pauluhn 2010). Default uncertainty factor approaches 

have also been applied to derive OELs for several types of nanoparticles (Aschberger and 

Christensen 2011). NIOSH has published recommended exposure limits for ultrafine and 

fine TiO2 and for carbon nanotubes and nanofibers based on quantitative risk assessments 

(NIOSH 2011, 2013b). As the number of nanotoxicology studies continues to increase, the 

challenge is how to effectively translate these research findings to occupational safety and 

health practice (Schulte et al. 2010).

To address the paucity of data for most nanomaterials, the OECD has recommended 

categorizing materials into similar categories based on physicochemical properties to 

extrapolate reasonable estimates of the bioactivity of a nanomaterial (Organisation for 

Economic Co-operation and Development 2007). The British Standards Institute (BSI) and, 

soon after, the Institute for Occupational Safety and Health of the German Social Accident 

Insurance (IFA) proposed broad categories of nanomaterials with provisional exposure 

limits. They also examined the parameters that indicate the risk a material may pose, with a 

particular emphasis on respiratory risks and mention of others, including those that might be 

sensitizers or explosion hazards (BSI 2007; Netherlands National Institute for Public Health 

and the Environment 2014). Hazard-based grouping and risk-based grouping of 

nanomaterials by comparative potency analyses of data-rich benchmark materials with data-

poor nanomaterials have been proposed to supplement evidence from nanotoxicology 

research (Kuempel et al. 2012a). A similar concept is the “biaxial approach,” which was 

developed to incorporate detailed examinations of representative materials with simpler 

assays of new nanomaterials (Nakanishi et al. 2015). “Read across” approaches are also 

being used to interpolate unknown material bioactivity from other materials with similar 

physicochemical, exposure, and hazard properties; and such approaches, while not 

universally accepted, offer a useful way to interpret the often incomplete data on ENMs 

(Organisation for Economic Co-operation and Development 2012; Sellers et al. 2015; Stone 

et al. 2014). Advances in risk assessment for ENMs are presented as a timeline in Fig. 6.

Risk management

With the increasing awareness of potential adverse health effects from ENMs, employers 

wanted to know how to manage any related risks. Protecting against occupational illness by 

identifying, managing, and preventing risks from ENM is the ultimate goal in occupational 

safety and health. Initially, although there was some general risk management experience 

with fine and ultrafine particles, HSE and NIOSH examined nanomaterial toxicities and 

exposures and concluded that the available data were insufficient to be certain of proper 

exposure mitigation methods and engineering controls, highlighting risk management as an 

important area of future study (NIOSH 2011; UK Health and Safety Executive (HSE) 2004). 

Independent health researchers concurred, and Maynard observed that because of the rapid 

rate of ENM development, it was critical for an analytical framework to be developed 

quickly and to incorporate exposure mitigation models that had a long lifespan (Maynard et 

al. 2006).
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With cognizance of the knowledge base needed for risk management, organizations, such as 

the ISO Technical Committee 229 Working Group moved to address issues of nanomaterial 

nomenclature, metrology, and environmental health and safety by proposing a set of 

guidelines and the use of control banding (International Organization for Standardization 

(ISO) 2012). Initial risk management recommendations were maximally protective, often 

incorporating full containment of potential ENM exposures and emphasizing the importance 

of medical surveillance (NIOSH 2009a). The introduction of models, such as the Nano Risk 

Framework, promoted the use of a systematic approach used by the chemical industry to 

manage the introduction of new materials (Environmental Defense—DuPont Nano 

Partnership 2007). Such frameworks compensate for a lack of knowledge in specific 

toxicities and exposure, which, despite the advent of well-validated methods of exposure 

assessment and control using NEAT, remains a persistent problem (Gulumian et al. 2012; 

Methner et al. 2010a, b). Application of these frameworks has accelerated the development 

and proposal of a standardized control-banding approach to manage ENMs (International 

Organization for Standardization (ISO) 2013).

At this time, guidelines for managing occupational exposure to ENM have been issued, with 

special guidance for specific nanomaterials (CNTs and high-aspect-ratio nanomaterials) 

(Institute for Occupational Safety and Health of the German Social Accident Insurance 

(IFA) 2009; UK Health and Safety Executive [HSE] 2013). In addition, information on risk 

management is being published that targets the employer, employee, and health and safety 

professionals, enabling better training and helping facilitate better risk management 

programs (European Commission on Employment 2014a, b; Kulinowski and Lippy 2011). 

Advances in risk management for ENMs are presented as a timeline in Fig. 7. These efforts 

are bearing fruit in the development by universities and research institutions of sophisticated 

risk management plans with nuanced decision-making logics rooted in established concepts, 

such as control banding (Grieger et al. 2015; Groso and Meyer 2013; Groso et al. 2010).

Medical surveillance

A question that arose early in the development of ENMs was whether workers’ health 

should be monitored. Medical surveillance (tracking the health of workers over time) is a 

critical tool for evaluating the health effects on workers potentially exposed to occupational 

hazards. In the case of ENMs, the limited data set available on hazards, exposure 

concentrations, and risk management effectiveness increased the perceived need for a 

general medical monitoring program for nanomaterial workers. However, that same lack of 

information in other areas also extends to understanding pathologies associated with ENM 

exposure. To date, no specific human illnesses have been definitely associated with ENM 

exposure, although some biomarkers of effect that may be associated with adverse effects 

have been identified (see section on epidemiology). Consequently, specific medical 

screenings (clinical tests) have not yet been recommended for most ENMs, but general 

medical surveillance is a prudent precautionary measure for workers exposed to ENMs 

(Nasterlack et al. 2008; NIOSH 2009b). To generate a more comprehensive data set for 

future surveillance efforts, the creation of a registry with information on workers potentially 

exposed to ENMs is an option being explored in various countries (Boutou-Kempf et al. 

2011; Health Council of the Netherlands 2012).
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Specific medical screening of workers exposed to selected ENMs may be warranted if an 

ENM is composed of a compound that has known toxicity and is already subject to medical 

screening (Trout 2011). Similarly, specific materials whose potential pathologies are well 

understood might be subject to more specific medical screening. Examples of such 

nanomaterials are CNTs and CNFs, because of the human pulmonary effects anticipated on 

the basis of extensive toxicological research (NIOSH 2013b).

It is also essential to carefully consider the structure of any medical surveillance, to ensure 

that the information gathered does not become the primary object rather than the 

maintenance of worker health (Nasterlack 2011; Schulte and Salamanca-Buentello 2006). 

Although there is a strong ethical impetus to use all available methods to characterize ENM 

health outcomes, caution must also be used to avoid errors in data analysis when well-

defined health endpoints from an exposure are unknown (Fischman et al. 2011). However, 

when used properly, medical surveillance is a powerful tool for risk management and can 

also serve as a mechanism to assess the health status of a group of workers exposed to a 

specific ENM. Establishment of such a program can provide critical knowledge to workers 

and involve them in the process of establishing a safe work environment (Schulte and 

Salamanca-Buentello 2006). Advances in medical surveillance for ENM workers are 

presented as a timeline in Fig. 8.

Epidemiology

Whether worker populations exposed to ENMs were at risk of adverse health effects was 

another early question that has awaited an answer. Because of the relatively short period of 

occupational exposure to ENMs for most workers and the time required for development of 

long-latency outcomes, such as pulmonary fibrosis and cancer, insufficient time has passed 

to measure many occupational diseases, and few epidemiologic studies have been 

conducted. Challenges in developing epidemiological studies are significant. Most 

prominent among the logistical challenges are the difficulty of identifying a subject 

population (which is linked to the small number of workers exposed to a specific ENM 

employed in many diverse industries) and the requirement of consistent tasks with relevant 

materials and exposures for a long period of time to elucidate chronic outcomes (Schulte et 

al. 2009). These challenges are due to the fact that there is not a single “nanotechnology 

industry,” but rather a collection of different industries that are enabled by nanotechnology, 

resulting in difficulties finding large groups of workers exposed to the same ENM.

Factors that could improve the development of epidemiological studies include: consistency 

in documenting ENM characteristics, a lack of confounding information on other toxicants 

in the workplace, and a proper range of exposure concentrations (that is, not entirely 

attenuated or rendered inconsistent by controls or PPE) (Laney et al. 2011; Schulte et al. 

2009). Prior to the study published by Liou et al. (2012), few studies had focused on 

nanomaterial workers, although studies had been conducted on naturally occurring or 

incidental exposures to nanoparticles, largely in the form of air pollution (Liou et al. 2012).

A more generalized plan was introduced by Riediker et al. (2012), which broke the general 

need for epidemiologic studies into subquestions divided into categories more closely linked 
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to materials and exposure assessment, determination of endpoints and markers, and elements 

of risk management, study design, and data analysis. This context recognized the need for 

advances in each field to determine the ideal analytical techniques for exposure assessment, 

determination of exposure biomarkers, and data handling methods as well as cross-talk 

between each to yield a more useful final result (Riediker et al. 2012).

In the last several years, a significant progress has been made in many of the critical areas 

outlined by Riediker et al. (2012). France has begun to implement a broad, compulsory 

surveillance plan for workers exposed to CNTs, which could potentially be broadened to 

other ENMs, forming a large database for epidemiologic data mining (Canu et al. 2013). 

Iavicoli released a comprehensive survey of biomarkers useful for potential ENM-related 

epidemiology categorized into markers of exposure for specific materials, common 

outcomes, and genotoxicity (Iavicoli et al. 2014). A case study reported by Journeay and 

Goldman demonstrated that certain ENMs might also have the ability to act as sensitizers 

(Journeay and Goldman 2014), suggesting this as a possible health outcome to be monitored 

by future epidemiology studies. In addition, in 2015, Ostro et al. and Peters et al. each 

published an epidemiologic study linking ultrafine exposure to negative cardiovascular 

outcomes in female teachers and type II diabetics (Ostro et al. 2015; Peters et al. 2015).

In a review of early ENM-related epidemiological studies, Liou et al. compared 11 cross-

sectional studies and 8 longitudinal studies, finding that the use of biomarkers was prevalent 

and a small number of nanomaterials had been tested (including but not limited to silver, 

CNTs, and TiO2), and all suffered from limited exposure assessment and sample size (Liou 

et al. 2015).

Nanomaterial usage is increasingly diversified, with many nanomaterials potentially having 

several different uses for multiple key industries. Thus, identification of an appropriate 

sample group for epidemiological studies will remain a challenge for the near term (Schulte 

et al. 2009), and significantly more data and studies are needed in this area. Advances in the 

field of ENM worker epidemiology are presented as a timeline in Fig. 9.

Conclusions

Although a great deal of progress has been made in NanOEH during the past two decades, 

further research and development are still required in each of the eight identified areas. 

There are now many published toxicology reports, which have identified possible 

mechanisms of action. Large numbers of diverse materials and models have been tested, but 

the potential hazards of the vast majority of nanomaterials are unknown. To build on the 

work thus far, it is necessary to synthesize a standard approach that combines knowledge of 

hazards, exposures, and risk assessment, which can then be used to formalize a clear 

decision-making logic model that will allow prioritization of resources to manage ENM-

associated risks (Kuempel et al. 2012b). There is a substantial lack of long-term animal 

studies, which weakens the strength of the toxicological findings. Although sampling and 

analytical instrumentation and methodology have become increasingly sophisticated, 

allowing for better occupational exposure assessments and more laboratory precision, 

metrology, similarly, needs to be evaluated and standardized. Common ENM reference 
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materials and study protocols need to be adopted to enable data to be more easily compared, 

interpreted, and applied.

Although exposure assessment methods with sophisticated approaches and logics have been 

developed, the total volume of data is still small and remains isolated, preventing meta-

analysis. As much of the analysis has been focused on a few classes of nanomaterials, such 

as CNTs, attention should be paid to a broader range of ENMs. Adoption of forward-looking 

risk management approaches, such as control banding, and more standardized analytical 

frameworks to characterize ENMs has been a significant step in coping with uncertainty 

about ENMs. The best occupational risk management frameworks are still broad and would 

benefit from further refinement.

Although the usefulness of medical surveillance for workers exposed to ENMs is accepted 

among health practitioners, a basis for specific medical screening guidance is still lacking. 

Epidemiologic investigation of the nanomaterials workforce is a relatively young field and 

suffers from a deficit of data (such as information on exposures with types of industries/

processes/job tasks). However, a framework for designing, executing, and analyzing studies 

has taken form in the literature. Finally, a critical measure beyond these eight areas is global 

compliance with available risk management guidance. This guidance is important, because 

there are still many uncertainties about potential health effects of ENMs. Few studies have 

examined the level of adherence to such guidelines by academia and industry, and such 

assessments are crucial to understand whether the knowledge gained from toxicological 

research and workplace exposure assessments is being disseminated in a way that is both 

comprehensible and practical for use by employers and in helping to protect the workers.

Responsible development of nanotechnology requires protection of workers at all stages of 

technological development. In each of the functional areas assessed, progress has been made 

but more is required. While our knowledge has grown, there is still a need for a better and 

faster hazard assessment, capabilities to handle of diverse ENMs and matrices, and 

understanding of actual worker exposures, in addition to a more standardized system of 

methods to allow these data to be more effectively gathered and compared by different 

researchers in distant locations. A maturing NanOEH field has two critical and 

interdependent needs: (1) continuing targeted and high-quality research into the areas of 

toxicology, metrology, medical surveillance, and epidemiology, and (2) harmonization of 

methods for conducting assays, assessing exposure, and assessing risk. A good start has 

been made, but more effort is needed.
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Fig. 1. 
Recurring International NanOEH conferences
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Fig. 2. 
Progress in ENM-related toxicology
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Fig. 3. 
Progress in ENM-related metrology
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Fig. 4. 
Progress in ENM-related exposure assessment
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Fig. 5. 
Progress in ENM-related engineering control and PPE
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Fig. 6. 
Progress in ENM-related risk assessment
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Fig. 7. 
Progress in ENM-related risk management
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Fig. 8. 
Progress in ENM-related medical surveillance
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Fig. 9. 
Progress in ENM-related epidemiology
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